Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Heliyon ; 10(7): e28060, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560194

RESUMO

In this research, we unveil the medical potential of pearls by identifying a novel bioactive peptide within them for the first time. The peptide, termed KKCHFWPFPW, emerges as a pioneering angiotensin I-converting enzyme (ACE) inhibitor, originating from the pearl matrix of Pinctada fucata. Employing quadrupole time-of-flight mass spectrometry, this peptide was meticulously selected and pinpointed. With a molecular weight of 1417.5 Da and a theoretical isoelectric point of 9.31, its inhibitory potency was demonstrated through a half-maximal inhibitory concentration (IC50) of 4.17 µM, established via high-performance liquid chromatography. The inhibition of ACE by this peptide was found to be competitive, as revealed by Lineweaver-Burk plot analysis, where an increase in peptide concentration correlated with an enhanced rate of ACE inhibition. To delve into the interaction between KKCHFWPFPW and ACE, molecular docking simulations were conducted using the Maestro 2022-1 Glide software, shedding light on the inhibitory mechanism. This investigation suggests that peptides derived from the P. martensii pearl matrix hold promise as a novel source for antihypertensive agents.

2.
BMC Pediatr ; 24(1): 234, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566022

RESUMO

BACKGROUND: The rebound of influenza A (H1N1) infection in post-COVID-19 era recently attracted enormous attention due the rapidly increased number of pediatric hospitalizations and the changed characteristics compared to classical H1N1 infection in pre-COVID-19 era. This study aimed to evaluate the clinical characteristics and severity of children hospitalized with H1N1 infection during post-COVID-19 period, and to construct a novel prediction model for severe H1N1 infection. METHODS: A total of 757 pediatric H1N1 inpatients from nine tertiary public hospitals in Yunnan and Shanghai, China, were retrospectively included, of which 431 patients diagnosed between February 2023 and July 2023 were divided into post-COVID-19 group, while the remaining 326 patients diagnosed between November 2018 and April 2019 were divided into pre-COVID-19 group. A 1:1 propensity-score matching (PSM) was adopted to balance demographic differences between pre- and post-COVID-19 groups, and then compared the severity across these two groups based on clinical and laboratory indicators. Additionally, a subgroup analysis in the original post-COVID-19 group (without PSM) was performed to investigate the independent risk factors for severe H1N1 infection in post-COIVD-19 era. Specifically, Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to select candidate predictors, and logistic regression was used to further identify independent risk factors, thus establishing a prediction model. Receiver operating characteristic (ROC) curve and calibration curve were utilized to assess discriminative capability and accuracy of the model, while decision curve analysis (DCA) was used to determine the clinical usefulness of the model. RESULTS: After PSM, the post-COVID-19 group showed longer fever duration, higher fever peak, more frequent cough and seizures, as well as higher levels of C-reactive protein (CRP), interleukin 6 (IL-6), IL-10, creatine kinase-MB (CK-MB) and fibrinogen, higher mechanical ventilation rate, longer length of hospital stay (LOS), as well as higher proportion of severe H1N1 infection (all P < 0.05), compared to the pre-COVID-19 group. Moreover, age, BMI, fever duration, leucocyte count, lymphocyte proportion, proportion of CD3+ T cells, tumor necrosis factor α (TNF-α), and IL-10 were confirmed to be independently associated with severe H1N1 infection in post-COVID-19 era. A prediction model integrating these above eight variables was established, and this model had good discrimination, accuracy, and clinical practicability. CONCLUSIONS: Pediatric H1N1 infection during post-COVID-19 era showed a higher overall disease severity than the classical H1N1 infection in pre-COVID-19 period. Meanwhile, cough and seizures were more prominent in children with H1N1 infection during post-COVID-19 era. Clinicians should be aware of these changes in such patients in clinical work. Furthermore, a simple and practical prediction model was constructed and internally validated here, which showed a good performance for predicting severe H1N1 infection in post-COVID-19 era.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Criança , Interleucina-10 , Influenza Humana/complicações , Influenza Humana/diagnóstico , Estudos Retrospectivos , China/epidemiologia , Gravidade do Paciente , Convulsões , Tosse
3.
Database (Oxford) ; 20242024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557635

RESUMO

Crop genomics has advanced rapidly during the past decade, which generated a great abundance of omics data from multi-omics studies. How to utilize the accumulating data becomes a critical and urgent demand in crop science. As an attempt to integrate multi-omics data, we developed a database, LettuceDB (https://db.cngb.org/lettuce/), aiming to assemble multidimensional data for cultivated and wild lettuce germplasm. The database includes genome, variome, phenome, microbiome and spatial transcriptome. By integrating user-friendly bioinformatics tools, LettuceDB will serve as a one-stop platform for lettuce research and breeding in the future. Database URL: https://db.cngb.org/lettuce/.


Assuntos
Alface , Multiômica , Alface/genética , Melhoramento Vegetal , Genômica/métodos , Bases de Dados Genéticas
4.
Nat Commun ; 15(1): 3399, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649376

RESUMO

The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.

5.
Nat Cell Biol ; 26(3): 393-403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388853

RESUMO

Cells sense physical forces and convert them into electrical or chemical signals, a process known as mechanotransduction. Whereas extensive studies focus on mechanotransduction at the plasma membrane, little is known about whether and how intracellular organelles sense mechanical force and the physiological functions of organellar mechanosensing. Here we identify the Drosophila TMEM63 (DmTMEM63) ion channel as an intrinsic mechanosensor of the lysosome, a major degradative organelle. Endogenous DmTMEM63 proteins localize to lysosomes, mediate lysosomal mechanosensitivity and modulate lysosomal morphology and function. Tmem63 mutant flies exhibit impaired lysosomal degradation, synaptic loss, progressive motor deficits and early death, with some of these mutant phenotypes recapitulating symptoms of TMEM63-associated human diseases. Importantly, mouse TMEM63A mediates lysosomal mechanosensitivity in Neuro-2a cells, indicative of functional conservation in mammals. Our findings reveal DmTMEM63 channel function in lysosomes and its physiological roles in vivo and provide a molecular basis to explore the mechanosensitive process in subcellular organelles.


Assuntos
Drosophila , Mecanotransdução Celular , Animais , Humanos , Camundongos , Drosophila/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
6.
Nat Commun ; 15(1): 1668, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395981

RESUMO

Root-associated microbiomes contribute to plant growth and health, and are dynamically affected by plant development and changes in the soil environment. However, how different fertilizer regimes affect quantitative changes in microbial assembly to effect plant growth remains obscure. Here, we explore the temporal dynamics of the root-associated bacteria of soybean using quantitative microbiome profiling (QMP) to examine its response to unbalanced fertilizer treatments (i.e., lacking either N, P or K) and its role in sustaining plant growth after four decades of unbalanced fertilization. We show that the root-associated bacteria exhibit strong succession during plant development, and bacterial loads largely increase at later stages, particularly for Bacteroidetes. Unbalanced fertilization has a significant effect on the assembly of the soybean rhizosphere bacteria, and in the absence of N fertilizer the bacterial community diverges from that of fertilized plants, while lacking P fertilizer impedes the total load and turnover of rhizosphere bacteria. Importantly, a SynCom derived from the low-nitrogen-enriched cluster is capable of stimulating plant growth, corresponding with the stabilized soybean productivity in the absence of N fertilizer. These findings provide new insights in the quantitative dynamics of the root-associated microbiome and highlight a key ecological cluster with prospects for sustainable agricultural management.


Assuntos
Soja , Microbiota , Fertilizantes/análise , Bactérias/genética , Solo , Rizosfera , Plantas , Microbiologia do Solo , Raízes de Plantas/microbiologia
7.
Natl Sci Rev ; 11(2): nwad189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213514

RESUMO

The intrinsic magnetic topological insulator MnBi2Te4 provides a feasible pathway to the high-temperature quantum anomalous Hall (QAH) effect as well as various novel topological quantum phases. Although quantized transport properties have been observed in exfoliated MnBi2Te4 thin flakes, it remains a big challenge to achieve molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films even close to the quantized regime. In this work, we report the realization of quantized anomalous Hall resistivity in MBE-grown MnBi2Te4 thin films with the chemical potential tuned by both controlled in situ oxygen exposure and top gating. We find that elongated post-annealing obviously elevates the temperature to achieve quantization of the Hall resistivity, but also increases the residual longitudinal resistivity, indicating a picture of high-quality QAH puddles weakly coupled by tunnel barriers. These results help to clarify the puzzles in previous experimental studies on MnBi2Te4 and to find a way out of the big difficulty in obtaining MnBi2Te4 samples showing quantized transport properties.

8.
Natl Sci Rev ; 11(2): nwac296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213528

RESUMO

Topological materials, which feature robust surface and/or edge states, have now been a research focus in condensed matter physics. They represent a new class of materials exhibiting nontrivial topological phases, and provide a platform for exploring exotic transport phenomena, such as the quantum anomalous Hall effect and the quantum spin Hall effect. Recently, magnetic topological materials have attracted considerable interests due to the possibility to study the interplay between topological and magnetic orders. In particular, the quantum anomalous Hall and axion insulator phases can be realized in topological insulators with magnetic order. MnBi2Te4, as the first intrinsic antiferromagnetic topological insulator discovered, allows the examination of existing theoretical predictions; it has been extensively studied, and many new discoveries have been made. Here we review the progress made on MnBi2Te4 from both experimental and theoretical aspects. The bulk crystal and magnetic structures are surveyed first, followed by a review of theoretical calculations and experimental probes on the band structure and surface states, and a discussion of various exotic phases that can be realized in MnBi2Te4. The properties of MnBi2Te4 thin films and the corresponding transport studies are then reviewed, with an emphasis on the edge state transport. Possible future research directions in this field are also discussed.

9.
Nano Lett ; 24(5): 1620-1628, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277130

RESUMO

Neuromorphic devices have attracted significant attention as potential building blocks for the next generation of computing technologies owing to their ability to emulate the functionalities of biological nervous systems. The essential components in artificial neural networks such as synapses and neurons are predominantly implemented by dedicated devices with specific functionalities. In this work, we present a gate-controlled transition of neuromorphic functions between artificial neurons and synapses in monolayer graphene transistors that can be employed as memtransistors or synaptic transistors as required. By harnessing the reliability of reversible electrochemical reactions between carbon atoms and hydrogen ions, we can effectively manipulate the electric conductivity of graphene transistors, resulting in a high on/off resistance ratio, a well-defined set/reset voltage, and a prolonged retention time. Overall, the on-demand switching of neuromorphic functions in a single graphene transistor provides a promising opportunity for developing adaptive neural networks for the upcoming era of artificial intelligence and machine learning.

10.
J Environ Manage ; 351: 119977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160549

RESUMO

Moso bamboo (Phyllostachys edulis) is a valuable nontimber forestry product with a biennial cycle, producing abundant bamboo shoots within one year (on-year) and few shoots within the following year (off-year). Moso bamboo plants undergo clonal reproduction, resulting in similar genetic backgrounds. However, the number of moso bamboo shoots produced each year varies. Despite this variation, the impact of soil nutrients and the root microbiome on the biennial bearing of moso bamboo is poorly understood. We collected 139 soil samples and determined 14 major physicochemical properties of the rhizosphere, rhizoplane, and bulk soil in different seasons (i.e., the growing and deciduous seasons) and different years (i.e., on- and off-years). Based on 16S rRNA and metagenomic sequencing, major variations were found in the rhizospheric microbial composition during different seasons and years in the moso bamboo forest. Environmental driver analysis revealed that essential nutrients (i.e., SOC, TOC, TN, P, and NH4+) were the main drivers of the soil microbial community composition and were correlated with the on- and off-year cycles. Moreover, 19 MAGs were identified as important biomarkers that could distinguish on- and off-years. We found that both season and year influenced both the microbial community structure and functional pathways through the biosynthesis of nutrients that potentially interact with the moso bamboo growth rhythm, especially the on-year root-associated microbiome, which had a greater abundance of specific nutrients such as gibberellins and vitamin B6. This work provides a dynamic perspective of the differential responses of various on- and off-year microbial communities and enhances our understanding of bamboo soil microbiome biodiversity and stability.


Assuntos
Poaceae , Rizosfera , RNA Ribossômico 16S/genética , Florestas , Solo/química
11.
PLoS Pathog ; 19(12): e1011876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100539

RESUMO

Xanthomonas citri pv. citri (Xcc) causes the devastating citrus canker disease. Xcc is known to have been introduced into Florida, USA in at least three different events in 1915, 1986 and 1995 with the first two claimed to be eradicated. It was questioned whether the Xcc introduction in 1986 has been successfully eradicated. Furthermore, it is unknown how Xcc has spread throughout the citrus groves in Florida. In this study, we investigated the population structure of Xcc to address these questions. We sequenced the whole genome of 343 Xcc strains collected from Florida groves between 1997 and 2016. Our analysis revealed two distinct clusters of Xcc. Our data strongly indicate that the claimed eradication of the 1986 Xcc introduction was not successful and Xcc strains from 1986 introduction were present in samples from at least 8 counties collected after 1994. Importantly, our data revealed that the Cluster 2 strains, which are present in all 20 citrus-producing counties sampled in Florida, originated from the Xcc introduction event in the Miami area in 1995. Our data suggest that Polk County is the epicenter of the dispersal of Cluster 2 Xcc strains, which is consistent with the fact that three major hurricanes passed through Polk County in 2004. As copper-based products have been extensively used to control citrus canker, we also investigated whether Xcc strains have developed resistance to copper. Notably, none of the 343 strains contained known copper resistance genes. Twenty randomly selected Xcc strains displayed sensitivity to copper. Overall, this study provides valuable insights into the introduction, eradication, spread, and copper resistance of Xcc in Florida.


Assuntos
Citrus , Xanthomonas , Cobre , Filogenia , Xanthomonas/genética , Doenças das Plantas/genética
12.
J Nutr Biochem ; 122: 109457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797731

RESUMO

Obesity is associated with accumulation of inflammatory immune cells in white adipose tissue, whereas thermogenic browning adipose tissue is inhibited. Dietary fatty acids are important nutritional components and several clinical and experimental studies have reported beneficial effects of docosahexaenoic acid (DHA) on obesity-related metabolic changes. In this study, we investigated effects of DHA on hepatic and adipose inflammation and adipocyte browning in high-fat diet-induced obese C57BL/6J mice, and in vitro 3T3-L1 preadipocyte differentiation. Since visceral white adipose tissue has a close link with metabolic abnormality, epididymal adipose tissue represents current target for evaluation. A course of 8-week DHA supplementation improved common phenotypes of obesity, including improvement of insulin resistance, inhibition of macrophage M1 polarization, and preservation of macrophage M2 polarization in hepatic and adipose tissues. Moreover, dysregulated adipokines and impaired thermogenic and browning molecules, considered obesogenic mechanisms, were improved by DHA, along with parallel alleviation of endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and mitochondrial DNA stress-directed innate immunity. During 3T3-L1 preadipocytes differentiation, DHA treatment decreased lipid droplet accumulation and increased the levels of thermogenic, browning, and mitochondrial biogenesis molecules. Our study provides experimental evidence that DHA mitigates obesity-associated inflammation and induces browning of adipose tissue in visceral epididymal adipose tissue. Since obesity is associated with metabolic abnormalities across tissues, our findings indicate that DHA may have potential as part of a dietary intervention to combat obesity.


Assuntos
Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Adipócitos , Tecido Adiposo Branco/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Termogênese
13.
Int J Biol Macromol ; 253(Pt 6): 127245, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797863

RESUMO

Shells and pearls are the products of biomineralization of shellfish after ingesting external mineral ions. Bone morphogenetic proteins (BMPs) play a role in a variety of biological function, and the genes that encode them, are considered important shell-forming genes in mollusks and are associated with shell and pearl formation, embryonic development, and other functions, but bone morphogenetic protein 10 (BMP10) is poorly understood in Hyriopsis cumingii. In this study, we cloned Hc-BMP10 and obtained a 2477 bp full-length sequence encoding 460 amino acids with a conserved TGF-ß structural domain. During the embryonic developmental stages, the cleavage stage had the highest expression of Hc-BMP10, followed by juvenile clams; the expression in the mantle gradually decreased with increasing mussel age. A strong signal was detected on epidermal cells on the mantle edge by in situ hybridization. In both the shell notching and inserting operations of the pearl fragment assay, we found that the expression of Hc-BMP10 increased after the above treatments. RNA interference assays showed that the silencing of Hc-BMP10 resulted in a change in the morphology of the prismatic layer and nacreous layer, with the prismatic layer less closely aligned and the disordered aragonite flakes in the nacreous layer. These findings indicate that Hc-BMP10 is involved in the growth and development of H. cumingii, as well as the formation of shells and pearls. Therefore, this study provides some reference for selecting superior species for growth and pearl breeding of H. cumingii at a molecular level and further investigation of the molecular mechanism for biomineralization of Hc-BMP10.


Assuntos
Bivalves , Unionidae , Animais , Biomineralização , Sequência de Aminoácidos , Unionidae/genética , Unionidae/metabolismo , Bivalves/química , Proteínas Morfogenéticas Ósseas/genética
14.
Nat Plants ; 9(10): 1627-1642, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735254

RESUMO

Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host-parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host-parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.


Assuntos
Interações Hospedeiro-Parasita , Plantas , Interações Hospedeiro-Parasita/genética , Plantas/genética
15.
Org Biomol Chem ; 21(33): 6772-6777, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37563967

RESUMO

A novel photocatalytic protocol for effective and efficient synthesis of cyclic 1,5-diketones containing chroman-4-one skeletons in moderate to good yields via radical cascade acylmethylation/cyclization of 2-(allyloxy)arylaldehydes with α-bromo ketones has been described. This reaction features a broad substrate scope, good functional group tolerance, and metal- and oxidant-free conditions. An acylmethyl radical-triggered cascade cyclization was involved.

16.
Mar Biotechnol (NY) ; 25(5): 790-799, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594541

RESUMO

In bivalves, the heterogeneity of mitochondrial DNA and its unique mode of transmission have been the focus of attention, which is called doubly uniparental inheritance (DUI). Prohibitin-2 (phb2) is a mitochondrial inner membrane protein that is a key mitophagy receptor for parental mitochondrial removal. Hyriopsis cumingii is a freshwater bivalve in China, the full-length cDNA of H. cumingii phb2 (named Hcphb2) is 2917 bp and encodes a total of 300 amino acids, a highly conserved sequence. Hcphb2 was highly expressed in the ovary. In the gonadal tissues of 5- to 8-month-old female mussels, the expression level of Hcphb2 continued to significantly increase. After Hcphb2 siRNA interference in 6-month-old female mussels, the expression of M-COII, a marker gene on M-type mitochondria, showed a considerable increase (p < 0.05). In contrast, the expression of autophagosome formation and maturation-related genes, atg4b, atg5, atg12, and atg16l, in the ATG family genes was significantly decreased (p < 0.01). Subcellular localization showed that Hcphb2 appeared in spermatogonia, spermatocyte, spermatid, and sperm, and its location changes synchronize with the behavior of M-type mitochondria location changes in DUI species. And it was found that miR-184 negatively regulated Hcphb2. The above results suggest that the mitochondrial autophagy receptor gene Hcphb2 may be associated with the degradation of M-type mitochondria in the freshwater mussel. This process requires multiple genes to participate, of which Hcphb2 and autophagy genes are only some of those that may play a role.


Assuntos
Bivalves , Unionidae , Animais , Masculino , Feminino , Mitofagia/genética , Sêmen/metabolismo , DNA Mitocondrial , Mitocôndrias/genética , Bivalves/genética , Bivalves/metabolismo , Unionidae/genética
17.
Science ; 381(6654): 227-231, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440647

RESUMO

As the number of CuO2 layers, n, in each unit cell of a cuprate family increases, the maximum transition temperature (Tc,max) exhibits a universal bell-shaped curve with a peak at n = 3. The microscopic mechanism of this trend remains elusive. In this study, we used advanced electron microscopy to image the atomic structure of cuprates in the Bi2Sr2Can-1CunO2n+4+δ family with 1 ≤ n ≤ 9; the evolution of the charge-transfer gap size (Δ) with n can be measured simultaneously. We determined that the n dependence of Δ follows an inverted bell-shaped curve with the minimum Δ value at n = 3. The correlation between Δ, n, and Tc,max may clarify the origin of superconductivity in cuprates.

18.
Sci Bull (Beijing) ; 68(12): 1252-1258, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37268443

RESUMO

The recently discovered antiferromagnetic (AFM) topological insulator (TI) MnBi2Te4 represents a versatile material platform for exploring exotic topological quantum phenomena in nanoscale devices. It has been proposed that even-septuple-layer (even-SL) MnBi2Te4 can host helical hinge currents with unique nonlocal behavior, but experimental confirmation is still lacking. In this work, we report transport studies of exfoliated MnBi2Te4 flakes with varied thicknesses down to the few-nanometer regime. We observe giant nonlocal transport signals in even-SL devices when the system is in the axion insulator state but vanishingly small nonlocal signal in the odd-SL devices at the same magnetic field range. In conjunction with theoretical calculations, we demonstrate that the nonlocal transport is via the helical edge currents mainly distributed at the hinges between the side and top/bottom surfaces. The helical edge currents in the axion insulator state may find unique applications in topological quantum devices.

19.
Exp Neurol ; 367: 114468, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307890

RESUMO

Traditional herbal medicine Ligusticum wallichii Franchat (Chuan Xiong) is frequently prescribed and highly recommended to patients with stroke. Rodent studies have demonstrated the neuroprotective effects of its active component tetramethylpyrazine against post-stroke brain injury and highlighted its role in antioxidant, anti-inflammation, and anti-apoptosis activity. Using permanent cerebral ischemia in rats and oxygen/glucose deprivation and reoxygenation (OGDR) in rat primary neuron/glia cultures, this study sheds light on the role of mitochondria as crucial targets for tetramethylpyrazine neuroprotection. Tetramethylpyrazine protected against injury and alleviated oxidative stress, interleukin-1ß release, and caspase 3 activation both in vivo and in vitro. Reduction of mitochondrial biogenesis- and integrity-related proliferator-activated receptor-gamma coactivator-1 alpha, mitochondrial transcription factor A (TFAM), translocase of outer mitochondrial membrane 20, mitochondrial DNA, and citrate synthase activity, as well as activation of mitochondrial dynamics disruption-related Lon protease, dynamin-related protein 1 (Drp1) phosphorylation, stimulator of interferon genes, TANK-binding kinase 1 phosphorylation, protein kinase RNA-like endoplasmic reticulum kinase phosphorylation, eukaryotic initiation factor 2α phosphorylation, and activating transcription factor 4 were revealed in permanent cerebral ischemia in rats and OGDR in neuron/glia cultures. TMP alleviated those biochemical changes. Our findings suggest that preservation or restoration of mitochondrial dynamics and functional integrity and alleviation of mitochondria-oriented pro-oxidant, pro-inflammatory, and pro-apoptotic cascades are alternative neuroprotective mechanisms of tetramethylpyrazine. Additionally, mitochondrial TFAM and Drp1 as well as endoplasmic reticulum stress could be targeted by TMP to induce neuroprotection. Data of this study provide experimental base to support clinical utility and value of Chuan Xiong towards stroke treatment and highlight an alternative neuroprotective target of tetramethylpyrazine.


Assuntos
Isquemia Encefálica , Oxigênio , Ratos , Animais , Glucose , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Mitocôndrias/metabolismo
20.
Phys Rev Lett ; 130(18): 186201, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204911

RESUMO

We investigate the quantum anomalous Hall plateau transition in the presence of independent out-of-plane and in-plane magnetic fields. The perpendicular coercive field, zero Hall plateau width, and peak resistance value can all be systematically controlled by the in-plane magnetic field. The traces taken at various fields almost collapse into a single curve when the field vector is renormalized to an angle as a geometric parameter. These results can be explained consistently by the competition between magnetic anisotropy and in-plane Zeeman field, and the close relationship between quantum transport and magnetic domain structure. The accurate control of zero Hall plateau facilitates the search for chiral Majorana modes based on the quantum anomalous Hall system in proximity to a superconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...